Université CADI AYYAD Faculté des Sciences Juridiques Economiques et Sociales Marrakech

Filière : Sciences économiques et Gestion **Matière :** Statistiques Descriptives Semestre 1

Pr : Adil BERRAZZOUK

TRAVEAUX DIRIGES: STATISTIQUES DESCRIPTIVES

Correction de la série N° 3

Correction Exercice 1

Tableau d'effectif

Salaires en (dh) (xi)	Effectif (ni)	Centre de classe (ci)	ni * ci	ci- <u>X</u>	ni ($ \mathbf{ci}$ - $\overline{m{X}})$
]0- 1000]	30	500	15 000	1 085	32 550
]1000- 1500]	25	1259	31 475	335	8 375
]1500 - 2000]	14	1750	24 500	165	2 310
]2000 - 2500]	9	2250	20 250	665	5 985
]2500 -3000]	12	2750	33 000	1 165	13 980
]3000 - 3500]	6	3250	19 500	1 665	9 990
]3500 - 4000]	4	3750	15 000	2 165	8 660
Total	100		158 725		8 1850

a. L'étendue (E) = (Borne supérieur – Borne Inférieur) = $(4\ 000 - 0) = 4\ 000\ dhs$

Interprétation : L'ensemble des salaires des clients de la société ALPHA s'écartent de 4 000 dhs

• La Moyenne arithmétique
$$(\overline{X})$$
: $\overline{X} = \frac{\mathbf{ni} * \mathbf{ci}}{\sum \mathbf{ni}} = > \frac{158500}{100} = 1585 \text{ dhs}$

Interprétation : le salaire moyen des clients de la société ALPHA est de 1 585 dhs.

b. Ecart absolu moyen
$$(e_{am}) = \frac{\sum ni (|c_{i} - \bar{x}|)}{\sum ni} = > \frac{8 \ 1850}{100} = 818,50 \text{ dhs}$$

Interprétation : les salaires des clients de la société ALPHA s'écartent de la valeur moyenne de 818,5 dhs.

C. L'écart type (σ) :

Salaires en (dh) (xi)	Effectif (ni)	Centre de classe (ci)	ni * ci	$(\mathbf{ci} - \overline{X})^2$	ni (ci- \overline{X}) ²
]0- 1000]	30	500	15 000	1177225	35316750
]1000- 1500]	25	1259	31 475	112225	2805625
]1500 - 2000]	14	1750	24 500	27225	381150
]2000 - 2500]	9	2250	20 250	442225	3980025
]2500 -3000]	12	2750	33 000	1357225	16286700
]3000 - 3500]	6	3250	19 500	2772225	16633350
]3500 - 4000]	4	3750	15 000	4687225	18748900
Total	100		158 725		94152500

• La variance
$$(\sigma^2)$$
: $\frac{\sum ni (xi-\overline{x})^2}{\sum ni} = \frac{94152500}{100} = 941525$

• L'écart-type (
$$\sigma$$
): $\sqrt{\sigma^2} = >\sqrt{941525} = 970,32 \text{ dh}$

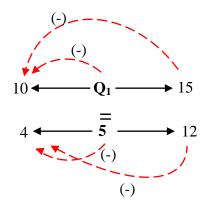
Interprétation : les salaires des clients de la société ALPHA varient par rapport à la valeur moyenne de 970,32 dhs de plus ou de moins.

d. Le coefficient de variation (CV) =
$$\frac{\sigma}{\overline{X}} \times 100 \Rightarrow \frac{970,32}{1585} \times 100 = 61,21\%$$

Interprétation : le pourcentage de variation des salaires des clients de la société ALPHA est de 61,21%.

Correction Exercice 2

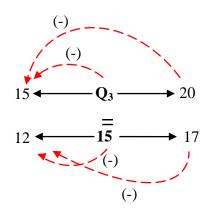
a. L'intervalle interquartile consiste à diviser la série statistique en 4 parties : $Iq = Q_3 - Q_1$


Intervalle de retards en minutes (xi)	Nombre des factures (ni)	ni c⊅
]5 - 10]	4	4
]10 - 15]	8	12
]15 - 20]	5	17
]20 - 25]	2	19
]25 - 30]	1	20
Total	20	

• Rang de Q1 = \sum n i * 25% = 20 x 0,25 = 5 => la classe :] 10 – 15]

• Rang de $Q_{3} = \sum n i * 75\% = 20 \times 0.75 = 15 => la classe :] 15 - 20]$

On va chercher la valeur dans la colonne des ni c7 pour déterminer la classe interquartile


✓ Calcule Q_1 :

$$=>\frac{(Q_1-10)}{(5-4)}=\frac{(15-10)}{(12-4)}=>(Q_1-10)(12-4)=(15-10)(5-4)$$

$$\Rightarrow$$
 $\mathbf{Q}_{1} = \frac{(15-10)(5-4)}{(12-4)} + 10 = \frac{5 \times 1}{8} + 10 = \frac{10,62 \text{ min}}{8}$

✓ Calcule Q₃:

$$=>\frac{(Q_3-15)}{(15-12)} = \frac{(20-15)}{(17-12)} => (Q_3-15)(17-12) = (20-15)(15-12)$$

=>
$$Q_{3} = \frac{(20-15)(15-12)}{(17-12)} + 15 = \frac{5 \times 3}{5} + 15 = \frac{18 \text{ min}}{5}$$

✓ **Iq**= Q3-Q1 =
$$18 - 10$$
, $62 = \frac{7,30 \text{ min}}{100}$

<u>Interprétation</u>: dans 50% des cas le retard des ouvriers de la société ALPHA varie entre 10,62 min et 18 min, soit un intervalle de 7,30 min.

b. L'étendue (E) = (Borne supérieur – Borne Inférieur) = (30 - 5) = 25 min

Interprétation : la durée des retards des ouvriers de la société ALPHA varie de 25 min.

Correction Exercice 3

Poids en kg (xi)	Effectif (ni)	ni.xi	$(\mathbf{xi} - \overline{X})$	$(\mathbf{xi} - \overline{X})^2$	$\operatorname{ni}(\operatorname{xi-}\overline{X})^2$
12	2	24	-0,6	0,36	0,72
12,1	6	72,6	-0,5	0,25	1,5
12,2	10	122	-0,4	0,16	1,6
13,3	15	199,5	0,7	0,49	7,35
12,4	9	111,6	-0,2	0,04	0,36
12,5	5	62,5	-0,1	0,01	0,05
12,6	3	37,8	0	0	0
Total	50	630			11,58

1. La moyenne arithmétique
$$(\overline{X})$$
: $\frac{\sum nixi}{\sum ni} = \frac{630}{50} = 12,6 \text{ kg}$

Le poids moyen des 50 tables produites est de 12, 6 kg

2. Calcule de l'écart- type

• La variance
$$(\sigma^2)$$
: $\frac{\sum ni (xi-\bar{x})^2}{\sum ni} = > \frac{11,58}{50} = 0,232$

• L'écart-type (
$$\sigma$$
): $\sqrt{\sigma^2} = > \sqrt{0.232} = 0.401$

Interprétation : L'écart type nous donne une valeur de 0,40 qui est largement inférieur à la moyenne calculé, cela veut dire que les données ne s'écartent pas vraiment de la moyenne, et que l'ensemble des poids des tables sont assez proches. (il y a une certaine homogénéité au niveau des poids des tables).

Correction Exercice 4

<<Voir cours TD>>